4.1 我国新能源汽车的发展阶段
我国新能源汽车的发展阶段,从2009年开始算起,到2020年,可以大致划分为4个阶段:
第一个阶段:2009年~2013年。这个阶段,是技术、产品、用户、市场的积累期,这个阶段的特点是核心技术、产品形态、用户使用习惯等基本上都是空白,到底该怎么搞,大家都不知道。但是有一点是毋庸置疑的,就是一定要发展节能与新能源汽车这个产业,这涉及我国能源安全,事关我国汽车产业能否做强,也是我国制造业转型升级的必由之路。
第二个阶段:2014年~2015年。经过第一个阶段的探索,核心技术有了一定的突破,产品形态呈现多种多样的局面,用户也慢慢的接受了新能源汽车这个新鲜事物,最重要的是,由于中央财政补贴和地方财政补贴的双重刺激,吸引了众多的企业和资本进入了这个产业,从而造成了2014年和2015年的井喷式发展。
第三个阶段:2016年~2017年(进行中)。我们把这个阶段叫做窗口期,或者摇摆期,是因为这个阶段是政策逐步让位于市场的阶段,但是由于政府对于监管的加强,以及消化前期政策所遗留的额问题需要一定的时间,客观上加剧了产业发展的波动,使得行业的发展在一年当中会出现大起大落的情况。
第四个阶段:2018年~2020年(预测)。我们把这个阶段称作突破期,政府建立新能源汽车产业发展的长效机制,补贴政策逐步退出,技术和产品取得重大突破,新能源汽车的市场化运作机制初步建立,从而一举奠定我国新能源汽车产业在全球的领先地位。
4.2 2020年的关键技术目标
不同的国家,对于新能源汽车的发展有各自的考虑,选择了适合自己的技术路线。我国新能源汽车产业的发展,在产业目标、市场目标、技术路线等方面都有非常明确的规划,对整个产业的发展起到了非常好的促进作用。这其中有三份比较重要的文件,对动力电池及Pack的技术路线会有很大影响,值得我们关注。
2012年6月28日 ,国务院下达关于印发《节能与新能源汽车产业发展规划(2012—2020年)》的通知。这是我国新能源汽车产业发展过程中最重要的一份纲领性文件,将节能与新能源汽车产业提高了国家战略的高度,对市场、产品、技术都做出了明确的规划。
2016年10月26日,受国家制造强国建设战略咨询委员会、工业和信息化部委托,中国汽车工程学会组织逾500位行业专家历时一年研究编制的《节能与新能源汽车技术路线图》正式发布,本项技术路线图描绘了我国汽车产业技术未来15年发展蓝图,对新能源汽车产业的技术路线做出了更加详细的规划。
2017年3月1日,工业和信息化部、发展改革委 、科技部以及财政部四部委公布了《促进汽车动力电池产业发展行动方案》,以加快提升我国汽车动力电池产业发展能力和水平,推动新能源汽车产业健康可持续发展。
这三份文件中,与动力电池及Pack相关的2020年技术指标,如上图所示。要达到上述要求,未来几年在工程技术方面需要有比较大的创新。
4.3 技术挑战及发展趋势
以纯电动乘用车为例,2020年的典型技术参数如下:
450km的综合工况续航里程,已经完全可以满足运营市场的需求,达到每天只充一次电的目标,也可以满足个人用户长途驾驶的需要,接近传统燃油车的满油续航里程。车辆使用温度范围广泛,可以适应我国90%以上的国土区域。在快充状态下,可以做到15分钟充满80%的电量,大大缩短充电时间。整车的整备质量小于1.5吨,百公里能耗在15度电以下,进一步提升电动汽车的能量转换效率。
为了达到上述技术指标,充分满足市场对于插电式混动汽车和纯电动汽车的需求,Pack技术必须在以下几个方面取得明显的进步。
(一)系统集成效率的大幅度提升
按照电芯能量密度300Wh/kg和Pack能量密度260Wh/kg的目标来计算,Pack系统的集成效率要做到85%,而当前乘用车Pack的集成效率普遍在65%左右,这意味着集成效率需要大幅度提升,才能达成目标。
要提高Pack的集成效率,有两个可行的途径,一是优化Pack内部的结构设计,大幅度减少Pack内部的组件数量,将更多的组件和功能集成在模组和箱体上,从而减轻重量;另一个是采用轻量化的材料,如采用铝型材或复合材料代替高强度钢,采用塑胶件代替金属件等,也可以减轻重量。
(二)广泛的温度适应性
冬天可以在零下20℃,甚至零下30℃的低温下工作,夏天可以经受50℃的地面高温而不趴窝,同时还要承受3~4C的快充,这是电动汽车大范围推广的必要条件。要满足这一要求,高换热系数和快速热交换的液冷/液热系统将成为Pack的标配。
液冷/液热系统的设计目标是在-30~50℃环境温度和4C快充工况下,将电池单体的工作温度控制在15~45℃、电池单体间的温差控制在5℃以内。
综合运用仿真分析和测试验证等手段,达到液冷/液热系统的最优化设计,才能做到-30~50℃的使用温度范围,以及大倍率和长寿命使用。
液冷/液热系统的设计,必须与整车的冷却循环系统相互匹配,必须与Pack的结构设计高度集成,必须达到极高的热交换效率。
(三)3~4C的快充将成为标配
想象一下,我们开着电动汽车出门,在充电站需要花费1个小时的时间进行充电,如果碰上充电排队,可能需要花费2个小时,甚至更长的时间,没有比这更糟糕的体验了。家用慢充和充电站快充相结合,是电动汽车普及的关键因素之一,对于出租、公交、物流等领域的营运车辆来说,快充的重要性甚至要大于续航里程,因为充电的时间是无法载客或载货的,充电时间越长,意味着运营效率越低,损失越大。
比较合理的快充要求,是在15分钟内,充满80%左右的电量,这要求Pack达到3C以上的充电能力,在电芯的设计、电连接设计、热设计、安全设计、以及BMS的能量管理方面,都要做出非常大的技术突破。
(四)与车同寿命的Pack产品
因为电池包的成本很高,如果做不到与车同寿命,车辆的维护成本将非常高昂,用户显然不会愿意为这额外的成本买单。
以乘用车为例,如果是个人用户购买,通常需要达到8年/12万公里的寿命要求,如果用于营运,寿命可能要达到5年/40万公里。
要达到如此严格的寿命要求,除了电芯的循环寿命和日历寿命要达到目标,还需要电子、电气、机械组件也达到8年以上的使用寿命。除此之外,在电芯的成组技术、系统的热管理和能量管理、以及Pack的售后维护等方面,也都有非常高的要求。
(五)总结
Pack技术的发展,涉及到多学科、多领域的知识,需要跨学科的技术融合,需要综合性的、系统性的产品开发思维,我们不能简单的把电化学、电子、电气、机械等作为核心技术看待,还要看到Pack产品所涵盖的材料、热交换、电磁兼容等方面的技术特征。
要开发一个可以装车的Pack产品很容易,要量产一个寿命、稳定性、可靠性、安全性都完全符合汽车级要求的Pack产品,则需要大量的工程实践、理论计算、计算机仿真和测试验证,还需要基于足够数量的产品进行迭代设计,不断的优化和完善。
本书的目的,在于通过系统的工程方法和大量的工程实践,为广大读者展示Pack产品设计与制造的基本流程和关键技术,推动新能源汽车产业的技术进步。
0 条