图1.用于ARC或DSC分析的微型池(all-inclusive-microcell, AIM)示意图[1]。
Takao Inoue和Kazuhiko Mukai两位老哥整的AIM示意图如图1所示,主要目的是为了弥补常规DSC测试得到的电池单一组分热稳定性结果无法反映电池整体安全性的不足。注:AIM只是简单将电池各组分组合,但还不是完成意义上的全电池,其结果能在多大程度代表全电池结果还有待商榷。
图2.NCA|LiPF6(EC/DEC)|AG和NCM333|LiPF6(EC/DEC)|AG电池充放电曲线。
如图2所示,NCA电池充放电容量分别为181.7 mAh/g和140 mAh/g,NMC333电池充放电容量分别是166 mAh/g和139 mAh/g。NMC333的电压曲线较NCA高一些,这主要是NCA的氧化还原反应是Ni3+←→Ni4+,而NMC333的氧化还原反应主要是Ni2+←→Ni3+←→Ni4+和Co3+←→Co4+。对于NCA电池,后续用于ARC分析的是Li0.34Ni0.8Co0.15Al0.05O2和Li0.6C6;对于NMC333电池,后续用于ARC分析的是Li0.39Ni1/3Mn1/3Co1/3O2和Li0.57C6。
图3.NCA电池体系的ARC测试结果(a)和DSC测试结果(b)。热失控点定义为ΔT/Δt ≥ 10 °C·min-1。
注:ARC和DSC测试均在有LiPF6(EC/DEC)电解液存在条件下进行。
从ARC和DSC测试结果看,NCA在120 ℃即开始显著产热,160 ℃ (对应DSC曲线的200 ℃)热速率达到峰值,随后缓慢降低,在200 ℃ (对应DSC曲线的240 ℃)产热速率再次急剧上升。产热的主要原因是NCA所释放的氧同电解液反应:
与NCA不同的是,嵌锂石墨在200 ℃以下均未出现显著的产热,只有200 °C ≤ T ≤ 260 °C和T>260 °C才出现显著的产热。其中200 °C ≤ T ≤ 260 °C的产热主要是嵌锂石墨与LiPF6反应,而T>260 °C的产热主要是嵌锂石墨同EC/DEC溶剂反应,反应式分别如下:
值得注意的是,AIM无论是ARC曲线还是DSC曲线除了在135 ℃出现的由于PE隔膜融化导致的吸热峰外同NCA曲线趋势几乎一致,表明导致NCA电池发生热失控的主因是NCA正极材料本身而不是石墨负极。
图4.NMC333电池体系的ARC测试结果(a)和DSC测试结果(b)。
热失控点定义为ΔT/Δt ≥ 10 °C·min-1。注:ARC和DSC测试均在有LiPF6(EC/DEC)电解液存在条件下进行。
如图4所示,NMC333在300 ℃以上才开始出现显著的产热,表明导致NMC333电池热失控的主因在石墨负极而不是NMC333正极材料。从以上对比也可以看出NMC333的热稳定性优于NCA。
根据以上结果整理得到的NCA电池和NMC333电池热失控反应机理如图5所示。NCA电池在约115 ℃就开始自产热,在约230 ℃由于EC/DEC的剧烈氧化反应导致电池热失控;而NMC333电池在260 ℃以上才开始发生热失控。
图6.NCA、NCA+MgB2和NCA+AlB2ARC或DSC曲线。注:ARC和DSC测试均在有LiPF6(EC/DEC)电解液存在条件下进行。
由于NCA电池热失控主因是NCA正极材料本身,因此要想提高NCA电池的安全性必须提高NCA正极材料的热稳定性。为此,作者对比了NCA中混合MgB2和NCA+AlB2后的热稳定性结果。如图6所示,NCA+MgB2和NCA+AlB2的产热速率较NCA有显著的降低,表明二者的热稳定性较NCA有显著提升。
0 条