世纪新能源网-新能源行业媒体领跑者,聚焦光伏、储能、风电、氢能行业。
  • 微信客服微信客服
  • 微信公众号微信公众号

磷酸铁锂电池失效原因汇总!

   2021-04-30 锂电派89311
核心提示:了解磷酸铁锂电池的失效原因或机理,对于提高电池性能及其大规模生产和使用非常重要。本文讨论了杂质、化成方式、存储条件、循环
了解磷酸铁锂电池的失效原因或机理,对于提高电池性能及其大规模生产和使用非常重要。本文讨论了杂质、化成方式、存储条件、循环使用、过充和过放等对电池失效的影响。

一、生产过程中的失效

在生产过程中,人员、设备、原料、方法、环境是影响产品质量的主要因素,在LiFePO4动力电池的生产过程中也不例外,人员和设备属于管理的范畴,因此我们主要讨论后三个影响因素 。

电极活性材料中的杂质对电池造成的失效

LiFePO4在合成的过程中,会存在少量的Fe2O3、Fe等杂质,这些杂质会在负极表面还原,有可能会刺穿隔膜引发内部短路。LiFePO4长时间暴露于空气中,湿气会使电池发生恶化,老化初期材料表面形成无定型磷酸铁,其局部的组成和结构都类似于LiFePO4(OH);随着OH的嵌入,LiFePO4不断被消耗,表现为体积增大;之后再结晶慢慢形成LiFePO4(OH)。而LiFePO4中的Li3PO4杂质则表现为电化学惰性。石墨负极的杂质含量越高,造成的不可逆的容量损失也越大。

化成方式对电池造成的失效

活性锂离子的不可逆损失首先体现在形成固体电解质界面膜过程中消耗的锂离子。研究发现升高化成温度会造成更多的不可逆锂离子损失,因为升高化成温度时,SEI膜中的无机成分所占比例会增加,在有机成分ROCO2Li到无机成分Li2CO3的转变过程中释放的气体会造成SEI膜更多的缺陷,通过这些缺陷溶剂化的锂离子会大量嵌入石墨负极。

在化成时,小电流充电形成的SEI膜的组成和厚度均匀,但耗时;大电流充电会造成更多的副反应发生,造成不可逆锂离子损失加大,负极界面阻抗也会增加,但省时;现在使用较多的是小电流恒流-大电流恒流恒压的化成模式,这样可以兼顾两者的优 势。

生产环境中的水分对电池造成的失效

在实际生产中,电池不可避免地会接触空气,由于正负极材料大都是微米或纳米级的颗粒、而电解液中溶剂分子存在电负性大的羰基和亚稳定态的碳碳双键,都容易吸收空气中的水分。

水分子和电解液中的锂盐(尤其是LiPF6)发生反应,不仅分解消耗了电解质(分解形成PF5),还会产生酸性物质HF。而PF5和HF都会破坏SEI膜,HF还会促进LiFePO4活性物质的腐蚀。水分子还会使嵌锂的石墨负极部分脱锂,在SEI膜底部形成氢氧化锂。另外,电解液中溶解的O2也会加速LiFePO4电池的老化 。

在生产过程中,除了生产工艺影响电池性能以外,造成LiFePO4动力电池失效的主要影响因素包括原材料中的杂质(包含水)和化成的过程,因此材料的纯度、环境湿度的控制、化成的方式等因素显得至关重要。

二、搁置中的失效

在动力电池的使用寿命中,其大部分时间都是处于搁置状态,一般经过长时间的搁置后,电池性能会发生下降,一般表现出内阻增大、电压降低及放电容量下降等。造成电池性能下降的因素有很多,其中温度、荷电状态和时间是最明显的影响因素。

Kassema等分析了LiFePO4动力电池在不同搁置状态下的老化,认为其老化的机理主要是正、负极电极和电解液的副反应(相对于正极的副反应,石墨负极副反应更重,主要是溶剂的分解,SEI膜的生长)消耗了活性锂离子,同时电池的整个阻抗增加,活性锂离子的损失导致了电池搁置的老化;而且LiFePO4动力电池的容量损失随着存储温度的升高严重加大,相比之下,随着存储荷电状态的增加,容量损失程度小一些。

Grolleau等也得到了相同的结论:存储温度对LiFePO4动力电池的老化影响较大,存储荷电状态的影响次之;而且提出了一个简单的模型。可以根据与存储时间相关的因素(温度和荷电状态)来预测LiFePO4动力电池的容量损失。在一定SOC状态下随着搁置时间的增加,石墨中的锂会向边缘扩散,与电解液、电子形成一种复杂的复物,造成的不可逆的锂离子比例也增加,SEI变厚和导电性降低(无机成分增加,部分有机会重新溶解)造 成的阻抗增加以及电极表面的活性降低共同造成了电池的老化。

不管是充电状态还是放电状态、在室温到85℃的温度范围之内,微分扫描量热法都没有发现LiFePO4和不同的电解液(电解质为LiBF4、LiAsF6或LiPF6)有任何反应。但是LiFePO4长时间浸在LiPF6的电解液中它还是会表现一定的反应活性:因为反应形成界面的速度非常慢,浸泡一个月以后LiFePO4表面仍然没有钝化膜阻止其与电解液的进一步反应。

在搁置状态,恶劣的存储条件(高温和高的荷电状态)会加大LiFePO4动力电池自放电的程度,使电池的老化更明显。

三、循环使用中的失效

电池在使用的过程中一般是放热的,因此温度的影响很重要。除此之外,路况、使用方式、环境温度等都会有不同的影响。

对于LiFePO4动力电池循环时的容量损失,一般认为是活性锂离子的损失造成的。Dubarry等的研究表明:LiFePO4动力电池循环时的老化主要是经历了一个复杂的消耗活性锂离子SEI膜的生长过程。在这个过程中,活性锂离子的损失直接降低了电池容量的保持率;SEI膜的不断生长,一方面造成了电池极化阻抗的增加,与此同时SEI膜厚度太厚,石墨负极的电化学活性也会部分失活。

在高温循环时,LiFePO4中Fe2+会有一定的溶解,虽然Fe2+溶解的量对正极的容量没有什么明显影响,但是Fe2+的溶解及Fe在石墨负极的析出会对SEI膜的生长起到一个催化作用。Tan定量分析了活性锂离子损耗在了哪里及哪步,发现大部分活性锂离子的损失发生在石墨负极表面,尤其在高温循环时更明显,即高温循环容量损失更快;并且总结了SEI膜的破坏与修复的三种不同的机理:(1)石墨负极中的电子透过SEI膜还原锂离子;(2)SEI膜的部分成分的溶解与再生成;(3)由于石墨负极的体积变化引起的SEI膜破裂 。

除了活性锂离子的损失之外,正、负极材料在循环使用中都会发生恶化。LiFePO4电极在循环使用中有裂缝的出现,会导致电极极化增加、活性材料与导电剂或集流体之 间的导电性下降。Nagpure利用扫描扩展电阻显微镜(SSRM)半定量地研究了LiFePO4老化之后的变化,发现LiFePO4纳米颗粒的粗化及某些化学反应产生的表面沉积物共同导致了LiFePO4正极阻抗增加。另外石墨活性材料的损失导致的活性表面降低和石墨电极的片层剥离也被认为是导致电池老化的原因,石墨负极的不稳定性会导致SEI膜的不稳定,会促进活性锂离子的的消耗 。

电池的大倍率放电可以为电动车提供大的功率,即动力电池的倍率性能越好,电动车的加速性能也越好。Kim等研究结果表明,LiFePO4正极和石墨负极的老化机理是不一样的:随着放电倍率的增加,正极的容量损失增加程度比负极大。低倍率循环时电池容量的损失主要是由于活性锂离子在负极的消耗造成的,而在高倍率循环时电池的动力损失是由于正极阻抗的增加造成的。

虽然动力电池使用中的放电深度不会影响容量损失,但是会影响其动力损失:动力损失的速度随着放电深度的增加而增加,这和SEI膜的阻抗增加、整个电池的阻抗增加都是有直接关系的。虽然相对于活性锂离子损失,充电电压上限对于电池失效的影响并不是很明显,但是太低或太高的充电电压上限都会使得LiFePO4电极的界面阻抗加大:低的上限电压下不能够很好地形成钝化膜,而太高的电压上限会导致电解液的氧化分解,在LiFePO4电极表面形成电导率低的产物。

LiFePO4动力电池在温度降低时其放电容量会迅速下降,主要是由于离子电导率的降低和界面阻抗的增加造成的。Li通过分别研究LiFePO4正极和石墨负极,发现限制正、负极低温性能的主要控制因素是不同的,在LiFePO4正极离子电导率的降低占主导,而在石墨负极界面阻抗的增加是主要原因。

在使用过程中,LiFePO4电极、石墨负极的退化及SEI膜的不断生长,不同程度地造成电池失效;另外,除路况、环境温度等不可控制的因素外,电池的正常使用也很重要,包括合适的充电电压、合适的放电深度等。

四、充电与放电过程中的失效

电池在使用的过程中往往不可避免地会出现过充的情况,相对来说过放的情况少一些,过充或过放过程中释放出来的热量容易在电池内部聚集,会进一步使得电池温度上升,影响电池的使用寿命、加大电池着火或爆炸的可能性。即使在正常的充放电条件下,随着循环次数的增加,电池系统内部单体电池的容量不一致性也会增加,容量最低的电池也会经历过充和过放的过程。

虽然在不同的充电状态下,相比于其它正极材料,LiFePO4的热稳定性是最好的,但是过充还会引发LiFePO4动力电池在使用过程中的不安全隐患。在过充的状态下,有机电解液中的溶剂更容易发生氧化分解,在常用的有机溶剂中乙烯碳酸酯(EC)会优先在正极表面发生氧化分解。由于石墨负极的嵌锂电位(对锂电位)非常低,锂在石墨负极的析出存在很大的可能性。

在过充的条件下引发电池失效的最主要的原因之一就是锂晶枝刺破隔膜引发的内部短路。Lu等分析了由于过充造成的石墨负极表面镀锂的失效机理。结果表明,石墨负极的整体结构没有什么变化,但是有锂晶枝和表面膜的出现,锂和电解液的反应造成表面膜的不断增加,不仅消耗了更多的活性锂,也使得锂扩散到石墨负极变得更难,反过来会进一步促进锂在负极表面的沉积,造成容量和库仑效率的进一步降低。

除此之外,金属杂质(尤其是Fe)通常也被认为是电池过充失效的主要原因之一。Xu等系统地研究了LiFePO4动力电池在过充条件下的失效机理。结果表明在过充/放电循环时Fe的氧化还原在理论上存在可能性,并给出了反应机理:发生过充时,Fe首先氧 化成Fe2+,Fe2+进一步氧化成Fe3+,然后Fe2+和Fe3+从正极一侧扩散到负极一侧,Fe3+最后还原成Fe2+,Fe2+进一步还原形成Fe;当过充/放电循环时,Fe晶枝会同时在正极和负极形成,会刺穿隔膜形成Fe桥,造成电池的微短路,伴随电池微短路的明显现象就是过充之后温度的持续升高。

在过放电时,负极的电势会迅速升高,电势的升高会引起负极表面的SEI膜的破坏 (SEI膜中的富含无机化合物的部分更容易氧化),进而会引起电解液的额外分解,从而造成容量损失。更重要的是,负极集流体Cu箔会发生氧化。Yang等在负极的SEI膜中检测出了Cu箔的氧化产物Cu2O,这会造成电池内阻增大,引发电池的容量损失。

He等详细地研究了LiFePO4动力电池的过放电过程,研究结果表明负极集流体Cu箔 在过放电时可以氧化成Cu+,Cu+进一步氧化成Cu2+,之后它们扩散到正极,可以在正极发生还原反应,这样Cu晶枝会在正极一侧形成,会刺穿隔膜,造成电池内部的微短路,同样由于过放,电池温度也会持续上升。

LiFePO4动力电池的过充可能会导致电解液氧化分解、析锂、Fe晶枝的形成;而过放可能会引起SEI破坏导致容量衰减、Cu箔氧化,甚至会形成Cu晶枝。

五、其它方面的失效

由于LiFePO4内在的电导率较低,因此材料本身的形态和尺寸、以及导电剂和粘结剂的影响都容易表现出来。Gaberscek等讨论了尺寸和碳包覆这两个矛盾因素,发现 LiFePO4电极阻抗只和平均粒径有关系。而LiFePO4内部的反位缺陷(Fe占据Li位)会对电池的性能产生一定的影响:因为锂离子在LiFePO4内部的传输是一维的,这种缺陷会阻碍锂离子的传输;由于高价态引入了额外的静电斥力,这种缺陷还会引起LiFePO4结构的不稳定。

颗粒大的LiFePO4在充电结束时并不能完全脱锂;纳米结构的LiFePO4可以降低反位缺陷,但是由于其高的表面能会引起自放电。目前使用较多的粘结剂是PVDF,具有高温可能会发生反应、溶于非水电解液、灵活性也不够等缺点,对LiFePO4的容量损失和循环寿命缩短有一定的影响。除此之外,集流体、隔膜、电解液组成、生产工艺、人为因素、外界振动和冲击等都会不同程度地影响电池的性能。

参考文献:苗萌等《磷酸铁锂动力电池失效的研究进展》 
 
反对 0举报 0 收藏 0 评论 1
 
更多>同类资讯
2024全球光伏品牌100强榜单全面开启【申报入口】 2024第二届中国BIPV产业领跑者论坛
推荐图文
推荐资讯
点击排行