丰桥技术大学电气和电子信息工程系的一个研究小组开发了一种氯(Cl)替代的Na3SbS4固体电解质,用于全固态的钠(Na)离子电池。与没有氯替代的样品相比,硫(S)被氯部分替代的Na3SbS4固体电解质的离子传导性提高了三倍。研究小组还证明,被Cl取代的Na3SbS4有一个晶体结构框架,使Na离子更容易在三维空间中移动,而且他们发现被Cl取代的Na金属阳极表现出更高的稳定性。
由于对大规模储能需求的增加,利用低成本和丰富的Na资源的全固态钠(Na)离子电池的研究正在加速进行。为了在实际应用中使用全固态钠离子电池,必须开发一种在室温下具有高离子传导性的固体电解质。在各种Na固体电解质中,Na3SbS4固体电解质在室温下具有1 mS cm-1或更高的电导率,因此在世界各地被广泛研究。然而,为了实现高电导率,需要通过球磨进行后处理,而通过较简单的合成工艺实现高离子电导率一直是值得注意的问题。
因此,研究小组采用适合大规模生产的液相合成方法,开发了一种被Cl取代的Na3SbS4固体电解质。通过在Na3SbS4固体电解质中用Cl部分替代S,他们在室温下的离子电导率比没有替代的样品(0.3mS cm-1)提高了三倍(0.9mS cm-1)。此外,他们还对离子传导途径进行了可视化,以澄清由于氯的取代而发生的结构变化对传导特性的影响。结果,他们证明了在Na3SbS4中用Cl部分取代S导致Na离子与S(或Cl)的局部结合松散,形成了Na与S(或Cl)之间的弱静电作用的晶体结构框架,特别是促进了离子沿晶体c轴的扩散。通过Cl替代而增加的离子传导性是由于形成了一个具有三维离子扩散途径的晶体结构。
此外,研究小组发现,与没有Cl替代的样品相比,Cl替代的Na3SbS4固体电解质在Na金属阳极上表现出更高的稳定性。他们证明,这种电化学稳定性的改善与阳极和固体电解质之间的界面电阻的减少有关,并且重度Cl掺杂能有效地改善与阳极的稳定性。
研究小组发现了一个重要的设计原则,即开发具有理想特性的固体电解质,如高离子传导性和卓越的电化学稳定性。他们认为,这项研究的固体电解质可以与液相涂层技术相结合,实现全固态Na离子电池的高存储容量和稳定循环。
0 条